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1. INTRODUCTION

There are two general reasons for studying the thermochemistry of energetic materials and propellant

formulations based on them. First, short term benefits can be achieved if correlations can be established

between measured thermochemical behavior (e.g., pyrolysis product distributions) and performance

properties (e.g., ignitability, sensitivity, burning rate) of formulations (Fifer et al. 199 1a); such correlations

can form the basis for small-scale screening tests for the property of interest, as well as provide

formulation guidelines to replace costly and time-consuming trial-and-error techniques. Second,

measurements of kinetics and mechanisms provide the input needed for the development of detailed

ignition and combustion models (Schroeder 1982, 1984a, 1984b, 1985a, 1985b; Fifer 1984; Boggs 1984).

For example, pyrolysis studies provide data directly relevant to certain phases of the ignition process and

also complement the very difficult near-surface combustion diagnostics in providing detailed information

about the boundary conditions for the gas-phase flame (species leaving the surface). Similarly,

extinguished propellant studies provide a way to investigate the extent and nature of the condensed phase

chemistry taking place during combustion, providing input to combustion models.

In studying the thermochemistry of energetic materials and propellant formulations, we have pioneered

the first use of a number of experimental techniques, including pyrolysis gas chromatography-Fourier

transform infrared (P-GC-FTIR) spectroscopy (Fifer et al. 1985; Liebman et al. 1986; Kaste 1988),

pyrolysis triple quadrupole mass spectrometry (P-TQMS) (Liebman et al. 1987; Snyder et al. 1989, 1990,

to be published), liquid chromatography-mass spectrometry (LC-MS) (Snyder et al. 1991), the use of

trapping/ concentrator systems in conjunction with pyrolysis gas chromatography (P-GC) (Fifer et al. 1985;

Liebman et al. 1986), P-GC-FTIR (Fifer et al. 1985; Liebman et al. 1986), or P-GC-MS (Schroeder

1990a), and the use of FTIR-photoacoustic spectroscopy (FTIR-PAS) (Pesce-Rodriguez and Fifer 1991;

Schroeder et al. 1991) and FTIR-Microscopy (Pesce-Rodriguez and Fifer 1992; Pesce-Rodriguez et al.,

to be published) (FTR-Mic) for characterization of propellant surfaces and residues. In addition, we have

been among the first to use capillary GC techniques instead of the more commonly used packed GC

columns, permitting larger pyrolysis products (e.g., amides, aldehydes, ketones, etc.) to be observed instead

of only the predominant permanenL gases (e.g., CO, C02, H2 0, N2, NO, NO2, N20). When seeking

pyrolysis-performance correlations, the rationale for the use of these various techniques has in most cases

been to increase the "information content" of the pyrolysis experiment. That is, we believe one is more

likely to find a correlation between pyrolysis products and performance test data if, say, 30 or 40 products

are measured instead of only 4 or 5. Also, when seeking mechanistic information, the larger pyrolysis
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fragments are much more likely to provide information about the early steps in the decomposition

chemistry than are the small permanent gas type molecules which may be formed primarily toward the

end of the sequence of chemical events. However, there are Lditional reasons for using some of these

techniques. For example, the use of trapping/concentrator techniques permits the pyrolysis experiment

to be carried out in air or other atmospheres, rather than only in the GC carrier gas (usually helium), and

the use of tandem mass spectrometric ("MS/MS") techniques such as TQMS permits separation and

identification of products while retaining the temporal information (i.e., the order of evolution of the

products) that is lost when using chromatographic techniques.

2. EXPERIMENTAL

2.1 Samples. Samples of hexanitrohexazaisowurtitane (HNIW, structure given below), modified

DuPont HYTREL thermoplastic elastomer (TPE), and a plasticized HNIW/TPE propellant formulation

were provided by Rod Willer of Thiokol Corporation, Elkton Division. FTIR analysis of the HNIW

showed it to be the 3 polymorph (see Nielsen et al. [ 1989] for FTIR spectra of the various polymorphs).

The sample had a fine particle size (-2-4 pm) and was shown by TGA to have a decomposition

temperature of -220 C. The propellant formulation was composed of HNIW, a modified HYTREL TPE,

and nitrate ester plasticizers. In addition to the Thiokol plasticized HNIW/TPE formulation, a hand-mixed,

unplasticized formulation was prepared by the authors and also examined (extinguished propellant study

only). This hand-mixed sample was prepared by melting 1.2 g of the modified HYTREL TPE in an agate

mortar. The TPE was melted and kept in the molten state by means of a hot plate and a heat lamp. To

the molten thermoplastic, 1.6 g HNIW were then added in four equivalent portions, mixing thoroughly

before the addition of the next portion. The propellant mixtire was then rolled into a cylinder and allowed

to cool. For extinguished propellant studies, the sample was burned at atmospheric pressure, and

extinguished by dropping into a container of water.

O2NN NNO2

O NN NNO22

02 N NO2

Hexanitrohexazaisowurtitane (HNIW)
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2.2 Pyrolysis--Gas Chromatography-FTIR (P-GC-FTIR). Instrument configuration: CDS

(Avondale, PA) Model 122 Pyroprobe (coil probe, sample in quartz capillary) connected via a heated

interface chamber to the splitless injector of a HP 5890 GC; outlet of the capillary column connected to

the light pipe of a Hewlett Packard (HP, Palo Alto, CA) Model 5965 IRD dedicated FTIR detector with

a narrow band mercury cadmium telluride (MCT) detector. GC conditions: Quadrex capillary colurmn,

0.32-mm x 25-m x 3-;.m OV-17 film, programmed as follows: 500 C for 3 min, 50 to 2000 C at 100/min.

Injector and interface chamber held at 2000 C; light pipe held at 200' C. Unless otherwise noted (as in

Section 3.1.1), splitless GC injector valves were opened at the initiation of the pyrolysis pulse. FTIR

conditions: three interferograms per second were continuously collected at 8 cm' resolution during the

chromatographic run. Real-time chromatograms were recorded via application of the Gram-Schmidt

algorithm (Griffiths and de Haseth 1986), which constructs chromatograms based on infrared response vs.

time. Associated FTIR spectra for each recorded chromatographic peak were available for interpretation

or for automated search of the EPA library of approximately 5,000 vapor phase spectra.

Individual permanent gases are not separated by capillary columns and elute as a single

chromatographic peak. Comparison of the relative quantities of permanent gases generated by different

samples was accomplished by examination of the FTIR spectrum associated with that peak and measuring

the relative intensity of the strongest absorbance band for each gas in that spectrum (i.e., CC 2, 2,363 cm;

N20, 2,238 cm'; CO, 2,111 cm', NO, 1,912 cm').

2.3 PEyrolysis--Fourier Transform Infrared (P-FTIR) Spectroscopy. A Barnes (Stamford, CT)

Pyrolyzer and Mattson (Madison, WI) Polaris FTIR with liquid nitrogen-cooled MCT detector were used.

The pyrolyzer is designed such that when placed in the spectrometer sample compartment, pyrolysis gases

are evolved directly into the IR beam. Typical conditions involved 16 scans at 2 cm' resolution recorded

immediately after pulse pyrolysis at 4500 C or 1,3000 C (in air or nitrogen); additional spectra were

recorded over a several-minute period following pyrolysis.

2.4 Pyrolysis--Gas Chromatography-Mass Spectrometry (P-GC-MS). Instrument configuration was

as follows: CDS Model 122 Pyroprobe (coil probe, sample in quartz capillary) connected via a heated

interface chamber to the injector of a HP 5890 GC, which in turn was connected via a heated transfer line

to a Finnigan (San Jose, CA) Incos 50 quadrupole mass spectrometer. GC conditions: HP-1 capillary

column, 0.2-mm x 12-m x 0.33-pm cross-linked methyl silicone, programmed as follows: -50' C for

3 min, -50' C to 2800 C at 25 0/min, hold 3 min. Interface chamber held at 1500 C; injector and transfer
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line at 2000 C. MS conditions: 70-eV ionization, mass range 20-500 amu scanned every 0.33 s. Pulse

pyrolysis in helium at 500' C or 1,0000 C. The software produces a total ion Lthromatogram,

corresponding peak area tables with the mass spectrum available for any observed peak, and automated

searches of the National Institute of Standards and Technology (NIST) library of approximately 50,000

mass spectra.

2.5 Pyrolysis/Thermolysis-Mass Spectrometry (P-MS). As with the P-FTIR technique, there is no

chromatograph involved in P-MS, so temporal information can be obtained. Samples were analyzed on

a Finnigan Model 4500 TSQ triple quadrupole system, operated using only the first quadrupole and with

standard 70-eV electron ionization. Samples were placed in a quartz capillary tube and heated by a CDS

Model 122 Pyroprobe with a direct insertion probe (DIP) inserted directly into the ionization chamber of

the MS. Isothermal, programmed (30 0/min and 600/min), and pulsed (at 1,0000 C a.'d 1,2000 C) heating

were employed. Mass spectra were scanned over the mass-to-charge (m/z) range of 45-650 every second

for up to several minutes. Instrument software permits display of total- or selected-ion traces vs. time,

as well as the corresponding mass spectrum at any point in the event.

2.6 Photoacoustic-FTIR (PA-FTIR) Spectroscopy. Spectra were obtained on the Mattson Polaris

spectrometer described in Section 2.3. Detection of the photoacoustic signal was achieved with a helium-

purged MTEC Model 100 photoacoustic cell. Each spectrum was the average of 32 scans with a

resolution of 32 cm'. Spectra were obtained with a moving mirror velocity of 0.316 cm/s and were

ratioed against a carbon black (Norit-A) background.

3. RESULTS

3.1 P-GC-FTIR Spectroscopy.

3.1.1 Comparison of Pyrolysis Product Distributions of HNIW, RDX, and HMX. Figure 1 shows

chromatograms generated by pyrolysis of HNIW, RDX, and HMX at 500' C and 1,0000 C. In all

chromatograms, there is large peak due to unseparated permanent gases near the beginning of the

chromatogram, followed by a series of peaks due to larger products extending out to retention times of

approximately 20 min. Infrared spectra of larger products can be found in the appendix of this report.

Uncalibrated, relative absorbances obtained from IR spectra associated with the permanent gas

chromatographic peaks of HNIW, RDX, and HMX are given in Table 1. (When examining the data in
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500'C Pyrolysis 1000'C Pyrolysis

PG pffJqy PG HINM3

6 1
4 

a857

121 2 4 67

PG RDX PG RDX

L~6

12 4 2 4 6

Note: PG: permanent gases

1: triazine 6: ester
2: formic acid 7: N-C heterocycle
4: forrnide 8: N-C heterocycle

Figure 1. P-GC-FTIR Data for HIW, RDX. and HMX Pyrolyzed at 5000 C and 1,000' C. Sample Size:

Table 1. Individual Permanent Gas Products Obtained on Pyrolysis of
BMIW, RDX, and HMX

Assignment 5000 C Pyrolysis 1,0000 C Pyrolysis

HNJW RDX HMX 1-1MW RDX HMX

j (relative IR intensity) (relative IR intensity)

CO2  1.00 0.40 0.52 1.00 1.00 1.00

N20 0.56 1.00 1.00 0.12 0.84 1.00

CO 0.08 0.04 0.08 0.04 0.08 0.12

NO 0.16 10.10 10.12 0.0)4 '10.12 0.16
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this table, the reader is advised against comparing absorbance values of CO2 and N20, which absorb

strongly in the infrared, with those of CO and NO, which absorb weakly.) On inspection of this table,

it is observed that while both RDX and HMX generate relatively more N20 than CO2 wh.n pyrolyzed at

5000 C, HNIW generates more CO2 than N20 at that temperature. When pyrolyzed at 1,0000 C, both

RDX and HMX generate relatively more N20 than does HNIW; all three oxidizers generate relatively high

levels of CO2. There is no obvious trend in the production of CO and NO other than that HNIW appears

to generate relatively less CO and NO than do RDX and HMX when pyrolyzed at 1,000' C.

Area-percents calculated from chromatograms of HNIW, RDX, and HMX are given in Table 2. As

a result of two changes in experimental procedure, values in both tables differ from those reported in

earlier works (Pesce-Rodriguez, Shaw, and Fifer 1991; Shaw and Fifer 1988; Pesce-Rodriguez et al. 1991;

Fifer et al. 199 1b). In previous experiments, the GC interface temperature was 1000 C rather than 2000 C,

as in these experiments. In addition, for previous experiments as well as in those of subsequent sections

of this report, the splitless GC injector valve was opened at the initiation of the 20-s pyrolysis pulse,

whereas the chromatograms presented in this section were obtained by opening the valve at the termination

of the pyrolysis pulse. The result of the closed GC injector valve is that pyrolysis products were exposed

to the pyrolysis temperature longer than in the previous experiments, in which pyrolysis products were

immediately swept away from the decomposing sample and into the GC column.

As observed from Table I and the chromatograms in Figure 1, there are several pyrolysis products

common to HNIW, RDX, and HMX, (i.e., the permanent gases, product 1 [triazine], product 2 [formic

acid], product 4 [formamide], and product 6 [an ester]). In addition to these products, pyrolysis of HNIW

and HMX at 1,0000 C produces product 15 (an isocyanate). Only BMW generates products 7 and 8

(nitrogen-carbon heterocycles). It is anticipated that products 4, 6, 7, 8, and 15 will be found to

correspond to presently unidentified products in the P-GC-MS experiments (Section 3.3) once the data

from the two techniques is correlated.

3.1.2 Effect of Sample Size on Pyrolysis Product Distribution. A comparison of the chromatograms

in Figure 2 illustrates the effect of the sample size examined in P-GC-FTIR experiments. The

chromatograms shown in Figure 2 are those of HNIW, though the same trend is observed for the

HNIW/TPE formulation (see Figure 3). For very small samples (i.e., <I mg, Figures 2a and 2d), the large

permanent gas peak and virtual absence of larger pyrolysis products suggests that the pyrolysis process

6



Table 2. Product Distribution for HNIW, RDX, and HMX When Pyrolyzed
at 5000 C and 1,0000 C

Retention Assignment Product 5000 C Pyrolysis 1,000° C Pyrolysis
Time Number I

HNIW RDX HMX HNIW RDX HMX

(min) (area-%) (area-%)

1.5 Permanent Gases - 21.1 52.9 61.4 69.3 68.2 54.8

7.5 Triazine 1 1.6 4.6 3.2 0.8 4.3 0.7

10.0 Formic Acid 2 4.4 3.3 4.9 0.7 1.7 0.4

12.5 Formamide 4 19.5 18.9 16.5 3.9 17.1 4.1

15.0 Ester(?) 6 30.9 20.1 14.1 2.7 8.7 -

16.5 Isocyanate(?) 15 - - - 19.6 - 40.0

17.0 N-C Heterocycle(?) 7 7.2 - - 1.9 - -

19.0 N-C Heterocycle(?) 8 15.2 1- - 1.3 - I -

is very efficient. For large samples (i.e., 2! 2 mg, Figures 2b, 2c, and 2e), HNCO and a significant

quantity of large pyrolysis products are observed, suggesting a low efficiency pyrolysis process. These

observations alert the researcher to the dangers of comparing results obtained from samples of different

sizes. On a positive note, comparison of results obtained with a range of sample sizes may contribute to

the understanding of differences in decomposition processes occurring in condensed vs. gas phase, early-

vs. secondary-processes, etc. Investigations along that line are currently in progress. An investigation of

temperature sensitivity will also be conducted to determine why products 3 and 5 are observed only when

the GC injector valve opened at the initiation of the pyrolysis pulse (see Figures 2 and 3), but not when

the valve is opened at the termination of the pulse (see Figure 1).

3.1.3 Effect of Propellant Ingredients on Pyrolysis Product Distribution. Chromatograms of pyrolysis

products generated by the plasticized HNIW/TPE propellant formulation and unplasticized binder are given

in Figures 3 and 4, respectively. Spectra of the propellant formulation pyrolysis products are given in the

appendix of this report.

The propellant formulation was subjected to both desorption and pyrolysis experiments.

Chromatograms obtained from desorption experiments (Figures 3a and 3b) varied over time, suggesting

that "aging" had occurred. Analyses performed on receipt of the samples ( "Day 1" sample, Figure 3a)

7



PG

(a) 0.5 mg
pytelyzed at 500*C

0 213

PG
6 (b) 2 uV

pyrmIyzed at 5001C

el in1 15 20

PG6

HNCO 47(c) 5 mg
5 pyrulyzed at 500*C

PG 
(d) 0.5 mg

pyrolyzed at 1000OC

(c) 2 mg

H"N C 4 9 7pyYOIyzed at 1000OC

0515 20

Note: PG: permnanenit gases
1: triazine 6: ester
2: formnic acid 7: N-C heterocycle
4: formnamide 8: N-C heterocycle

Figure 2. P-GC-FrIR Data for fINIW. (GC Iniector Valve Ovened at Initiation of Pyrolysis Pulse).

8



PG
(a) 2 g;, pyrolyzd at 200"C 13 I4

S is2a
9 11

(b) 2 mg; pywolyzad at 200*C9
*Day 16* PG4 6

2 I0
12

19 15 20

PG
(c) 05 mg; pyrolyzd at 500C

S2 3 9 I5 65

5 1 15 2

(d) 2 rag; pyrolyzed at 100*C

3 I 5 7

IG 15

() 5 m; pyiclyzed at 1000*C 3 1 15 7

PO

Is

10 9 15 za

Timo Cmin. 3

Note: PG: permanent gases
1: triazine 5: N-C heterocycle
2: formic acid 6: ester
3: carboxylic acid 7: N-C heterocycle
4: formamide 8: N-C heterocycle

Figure 3. P-GC-FTIR Data for Plasticized HNIWTPE Propellant Formulation. (GC Iniector Valve
Opened at Initiation of Pyrolysis Pulse).
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(a) S00"C pyrolysis

tj M a2:

senest1

(b) I OOOC pyrolysis P

5 IQ 15 20
Time (mn.)

Figure 4. P-GC-FTIR Data for Unplasticized TPE Binder. (GC Injector Valve Opened at Initiation of
Pyrolysis Pulse).

show two sharp, well-resolved peaks at 14 min and 15.6 min (peaks 13 and 14, respectively), whereas

analyses performed on a surface that had been exposed to the atmosphere for 16 days following receipt

of the samples do not show these peaks but do show two new peaks at 11 min and 17.5 min. The IR

spectra of peaks 13 and 14 identify them as the nitrate esters plasticizers used in this formulation.

Analyses of control samples confirm the assignment (chromatograms and spectra not shown). Spectra of

peaks 9 and 11 Idetify them as esLers (exact identity not yet determined). These desorption results

suggest that nitrate ester plasticizer evaporated and/or decomposed while exposed to the atmosphere.

Results from a previous investigation (Pesce-Rodriguez, Shaw, and Fifer 1991; Shaw and Fifer 1988)

indicate that nitrate esters (or their decomposition products) may play a catalytic role in RDX

decomposition. Depletion of plasticizer from HNIW-based propellant may therefore be very important.

As a result of sample nonavailability, experiments on recently processed propellant ("Day 1" samples)

were not reproduced; those of exposed ("Day 16" and older) samples were reproduced. Further desorption

studies on freshly processed propellant are planned when samples become available.

Comparison of the chromatograms obtained from HNIW/IPE pyrolysis experiments (Figures 3c-3g)

with those of pure HN1W (Figures 2a-2e) indicates that the HNIWjTPE propellant and pure HNIW

generate many of the same pyrolysis products (i.e., products 1-8 and 15). The HNIW/TPE formulation
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differs from pure HNIW with respect to relative amounts of those products that it generates. Comparison

of Figures 2b and 3d (5000 C pyrolysis of 2-mg HNIW and the HNIW/TPE propellant, respectively)

indicates that the propellant formulation generates relatively less product 4, 6, 7, and 8, relatively more

product I (triazine), and approximately the same relative amounts of products 2, 3, and 5. In addition to

the products common to HNIW and the propellant formulation, there are several products that are unique

to the formulation and that do not appear to be related to the TPE binder (i.e., products 9-14). Products

of the TPE binder are all benzene based (i.e., benzene, methyl benzene, styrene, methyl styrene,

naphthalene) and d,' not appear in the pyrolysis product of the propellant formulations under any of the

experimental conditions used in this investigation.

The significance of these observed similarities and differences in pyrolysis product generation has not

yet been determined. It is suspected that propellant ingredients play a role in "removing" certain pyrolysis

products by reacting with them to form nonvolatile residue or by catalyzing their conversion to permanent

gases. Additional work on the exact identification of pyrolysis products and the elucidation of the

mechanism of their formation and "removal" is currently in progress. Efforts will focus on examination

of possible reactions between the plasticized binder, HNIW, and their respective decomposition products.

3.2 P-FTIR Spectroscopy. This technique generally detects small pyrolysis products, such as the

permanent gases. Since no GC is involved, temporal information can be obtained if rapid scanning

techniques are used (Patil, Chen, and Brill 1991). Experiments were carried out as a function of pyrolysis

temperature (5000 C and 1,3000 C), atmosphere (air and N2), and time (up to several minutes). Figures 5a

and 5b show P-FTIR spectra for HNIW pyrolyzed at 5000 C and 1,300' C, respectively. The spectra are

similar, and show the presence of NO (1,800-1,950 cm-'), NO2 (-1,600 cm' and weak bands at -1,260

and 1,750 cm'), N20 (2,170-2,250 cm'), (CO 2,050-2,200 cm-'), CO2 (670 cm"1, and 2,300-2,380 cm'),

HNCO (2,220-2,300 cm'), HCN (720 cm-' and 3,220-3,380 cm'), plus bands near 1,300 cm-' and

1,410 cm' due to additional pyrolysis products not yet identified. With increasing pyrolysis temperature,

the NO2 decreases slightly, and the CO 2 increases more noticeably, relative to the other products.

Use of rapid scanning P-FTIR techniques (Patil, Chen, and Brill 1991) to identify which products

appear first has not yet been attempted. However, the observed changes in the composition of the

pyrolysis products over a several second to several-minute time scale may be suggestive of secondary

chemistry (on a much shorter time scale) during ignition and combustion. Figure 5c shows the FTIR

spectrum corresponding to Figure 5b, several minutes after the pyrolysis. Taking into account the
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difference in scale (ordinate axis), it can be seen that with time, the levels of HNCO, HCN, and NO 2

decrease and that new bands (as yet unassigned) near 1,350 cm1 appear.

3.3 P-GC-MS. This is a well-established technique, and very sensitive to low-level nitramine

pyrolysis products (Schroeder 1988, 1990a, 1990b). Figures 6a and 6b show representative total ion

chromatograms for HNIW pyrolyzed at 5000 C and 1,0000 C, respectively. Although the chromatograms

are very similar to each other, there are a few unique products at each temperature. In both cases, there

is a very large peak at about 1 min due to small unseparated permanent gases (species are identified by

associated mass spectra); in the 1,0000 C run, this large peak is partially resolved by the cryogenic

(-500 C) conditions into peak A, which is due to diatomic molecules (e.g., CO, NO, N2), and peak B,

which is much larger and is due to triatomic molecules (e.g., N20, CO2) and C!2N2. There is a medium

intensity peak at 3 min due to NO2 and several smaller peaks due to larger pyrolysis fragments. These

peaks and principal masses in the corresponding mass spectra are summarized in Table 3.

In addition to the permanent gases, at least 12 other products are observed. Three of the products

(E, L, M) are observed at 5000 C but not at 1,0000 C; one (I) is observed only at 1,0000 C. As indicated

in Table 3, many of the mass spectra were not present in the NIST library and have not yet been

identified. There is evidence for cyanogen (C2N2, m/z 52) in the permanent gas peak, possibly from

decomposition of HCN, which is observed under the tail of the permanent gas peak (e.g., scan 400-500).

Formic acid (HCOOH), HNCO, and perhaps dimethyl formamide ([CH 3]2NCHO, m/z 73) have also been

identified. Although NO2 frequently cannot be chromatographed, it appears to have been detected in this

case. Products I and J are closely related to NO 2, both having m/z 46 and 30 as their two biggest

fragments; although the presence of m/z 63 for Product J is consistent with nitric acid (HNO3), the

presence of m/z 28 and 44 fragments for products I and J is probably more consistent with H2NNO and

H2NNO 2H, respectively. Similarly, Products L and M appear to be structurally related, since both have

similar mass spectra with m/z 96 as the predominant fragment. Product N produces fragments at m/z 149

and 177 and is the largest HNIW fragment observed in these experiments. Experiments using chemical-

rather than electron-ionization are currently being performed. Results from these experiments should

provide the molecular weight of each pyrolysis product as well as additional structural information from

the CI fragmentation pattern.

Compared to HNIW, pyrolysis results for RDX and HMX at 5000 C (chromatograms not shown)

exhibit the following trends: HMX and RDX produce less NO2 (as also observed with P-FTIR, see

13
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Table 3. Pyrolysis GC-MS Results for HNIW

Peak Retention Scan Principal Masses Identity Comments
Time Number

(min:sec) (amu)

A 0:55 156 30,44,28 CO, N2,NO,CO2,N20

B 1:15 215 44,30,28,52,26,45,46 C0 2,NO2 ,CONO,C2N2

C 4:02 689 30,46 NO2

D 4:41 802 43,42,29,28 HNCO

E 5:44 982 70,40,43,28,29,30,42 ? 5000 C only

F 5:51 1,000 83,85,47,48,35,49,87 ?

G 6:03 1,035 43,45,29,61,28,27,70,44,73,26,88 ?

H 7:08 1,222 29,46,45,44,28 HCOOH

I 7:39 1,309 46,30,28,44 H2NNO(?) 1,0000 C only

1 7:55 1,360 46,30,44,28,63 H2NNO 2H(?)J-NO3(?)

K 10:00 1,713 45,29,44,28,43,73,96(?) (CH3)2NCHO(?)

L 10:54 1,867 96,28,42,29,43,69,41,27,53,68 ? 5000 C only

M 12:10 2,083 96,28,42,43,27,30,41,46,69,45 ? 5000 C only

N 12:38 2,162 149,177,30,29,28,46,150,105,76 ?

Section 3.2) and more of Product E. Under these conditions, the difference in observed HNCO between

HNIW and RDX/HMX is not as large as in the P-FTIR experiments. Additional HNIW products common

to RDX and HMX inc!ude H, J, K, and N. Several observed products are unique to HNIW, including F,

0, 1, L, and M.

3.4 P-MS Data. Figures 7a and 7b show the time evolution of the principal mass spectral peaks for

HNIW and HMX, respectively, when heated isothermally below their normal decomposition temperature.

The traces span a several-minute period. In these experiments, the sample is heated under vacuum

conditions near the ionizing region of the MS; because of the vacuum conditions, vaporization as well as

decomposition can occur. The behavior of the two nitramines is quite different. HMX (Figure 7b)

appears to undergo both vaporization and decomposition, resulting in mass spectra that are invariant with

time; the various humps in the selected ion traces result from amounts of the sample vaporizing at

different times during the course of the analysis. The behavior for HNIW (Figure 7a) contrasts with that
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of HMX in that its mass spectra are observed to vary with time. In the early portion of the thermal

treatment, species are evolved that give mass spectra having several mass fragments between the m/z range

of 46 to 81. Approximately midway through the analysis, a fragment with m/z 108 appears in the mass

spectrum. The mass spectrum remains fairly constant until rapid decomposition takes place near the end

of the analysis. At that point, many larger fragments appear, including those with m/z as high as 392,

347, 316, 300, and 270. It is not clear to what extent this mass spectrum (shown in Figure 8) corresponds

to pyrolysis fragments as opposed to ionization-induced fragments of vaporized HNIW. Very similar mass

spectra are obtained for pyrolysis under programmed (300 or 600/min) or pulsed (rapid heating to

1,0000 C) conditions; this, together with the rapid gasification late in the isothermal run (Figure 7a)

suggests that pyrolysis, rather than just vaporization, is taking place. The mass spectrum shown in

Figure 8 exhibits no significant intensity at m/z 438, the molecular weight of HNIW, but it is common

not to observe a parent peak when using 70-eV electrical ionization. The largest fragment with significant

intensity has an m/z of 392, which corresponds to loss of one NO2 from the HNIW molecule.

3.5 Extinguished Propellant Studies. Figur" 9 gives the FTIR-photoacoustic (FTIR-PA) spectra of

HNIW (Figure 9a), unplasticized TPE binder (Figure 9b), a hand-mixed propellant (Figure 9c), and the

surface of the hand-mixed propellant after burning and Lx'_ng.iLXment (Figure 9d). In the spectrum of

the unburned propellant (Figure 9c), features of both HNIW and the TPE are visible. Comparison of these

features in spectra (c) and (d) suggest that the surface of the extinguished propellant is slightly enriched

in TPE (e.g., compare intensity of RDX band near 3,050 cm-1 with that of HNIW near 2,900 cm' in

Figures 9c and 9d). This phenomenon has been observed in the spectra of several other extinguished

propellants (Schroeder et al. 1991). Examination of the residue that bleeds from the burning HNIW/TPE

grain was performed by IR microscopy (spectrum not shown) and found to be composed primarily of the

HYTREL TPE.

Unfortunately, this hand-mixed HNIW/TPE propellant contained only about 60% HNIW and therefore

burned with formation of large amounts of surface char, making it unsuitable for more detailed

extinguished propellant studies. Scanning electron microscope (SEM) analysis of a cryogenically cleaved

extinguished sample showed a very thin reaction/melt layer.

Attempts at burning/extinguishing the Thiokol HNIWJIPE formulation were unsuccessful due to the

rapid and nearly complete combustion of the propellant, leaving no sample for subsequent analysis.
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4. SUMMARY AND FUTURE WORK

Both permanent gas and large fragment pyrolysis products of HNIW have been examined by P-FTIR,

P-GC-MS, and P-GC-FTIR techniques and the results compared to those for HMX and RDX. HNIW

produces a higher CO2:N20 ratio than do RDX and HMX. In addition to two unique large pyrolysis

products (i.e., N-C heterocycles), HNIW generates several of the same products as RDX and HMX,

including triazine and formic acid, as well as an unidentified ester, ketone and isocyanate.

Investigation of the effect of propellant ingredients suggests the "removal" of HNIW decomposition

products by reaction with either the TPE binder or the nitrate ester plasticizers (or their decomposition

products). Desorption studies appear to indicate evaporation and/or decomposition of nitrate ester

plasticizers from "aged" HNIWTPE propellant formulations.

Variations in pyrolysis product distributions as a function of sample size are suspected to result from

secondary reactions of HNIW and/or its decomposition products. Further analysis of "large" samples is

being conducted to determine the reactants and mechanisms of these secondary reactions.

Future work will include: (a) correlation and identification of the large pyrolysis fragments observed

with the P-GC-FTIR and P-GC-MS techniques; (b) further measurements on extinguished HNIW

propellants, including identification of subsurface combustion products using HPLC-MS, in order to

formulate a mechanism for the thermochemistry of HNIW during ignition and combustion; (c) examination

of solution-phase thermochemistry of HMX, RDX, and HNIW, using supercritical fluid solvents; and

(d) investigation of evaporation and/or decomposition of nitrate ester plasticizers in "aged" HNIWITPE

formulations.
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APPENDIX:

GAS PHASE FTIR SPECTRA OF PYROLYSIS PRODUCTS OF
HNIW AND THE HNIW/TPE PROPELLANT
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Table A-1. Pyrolysis Products of HN W and/or HNIW/TPE Formulation

Peak Retention Identification
Number Time (min)

1 7.5 triazine

2 10.0 formic acid

3 12.8 carboxylic acid

4 12.5 formamide

5 14.9 N-C heterocycle (?)

6 15.0 ester (?)

7 17.0 N-C heterocyclc
(oxidized)(?)

8 19.0 N-C heterocycle
(oxidized)(?)

9 12.7 ester(?)

10 16.7 ester(?)

11 17.6 ester(?)

12 19.0 ester(?)

13 13.8 nitrate ester

14 15.4 nitrate ester

15 16.5 ester of HNCO
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